

### Environment, health, and safety

#### Li, Jiang



# What kind of role does environment play in people's health?





### Health ecological model





### **Environment & health**

#### **Environment can affect health in two ways**



24% of the world's disease burden and 23% of all deaths can be attributed to environmental factors (WHO, 2006)





- Accidents between motor vehicles, bicycles and pedestrians (particularly children and young people)
- Pollution from burning fossil fuels
- Noise from transportation
- Psychosocial effects such as severance of communities by large roads and the restriction of children's movement
- Increased the odds of spread of infection(Vector borne diseases)
- Climate change due to CO<sub>2</sub> emission
- Improved physical activity from cycling or walking
- Increased access to employment, shops and medical establishment
- Recreational uses of road spaces
- Contributes to economic development



### **Environment & doctors**

- Helping patients *interpret* environmental risks about which they are concerned.
- Exploring the possibility of environmental (occupational) causes of disease in patients by performing case histories and physical examinations that are environmentally sensitive.
- Reporting diseases that might have been caused by the environment to public health agencies

#### **Clinician needs to know**

- ① What environmental hazards patients are likely exposed to,
- ② How they are potentially exposed,
- ③ and how the exposure threatens their health.



### Environmental health by WHO

- All physical, chemical, and biological factors external to a person
- The assessment and control of environmental factors that can potentially affect health targeted towards preventing disease and creating health-supportive environments
- This definition excludes the social and cultural environment





This class

- Environmental agents that matter to health and health care
- Health impact of the environment
- Mechanism of health impact of environment
- Transmission of environmental agents
- Setting of environmental health risks
- Environmental health specifics



### The environment

#### Agents

- (Micro)biologic agents
- Chemical agents
- Physical source

#### Transmitters

- ♦ Air
- ♦ Soil
- Water

#### Settings

- ♦ Home
- School
- Worksite



#### **Classification environmental agents**

| Environmental agent | Description and examples                                                                                                                         |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Biological          | Comprises all flora and fauna, including pathogenic parasites (e.g. schistosoma), viruses (e.g. enteroviruses), and bacteria (cholera, typhoid). |
| Physical            | Geological, geographical, climatic and meteorological characteristics. Noise, vibration, motor vehicles and other means of transport.            |
| Chemical            | Organics and inorganic chemicals, drugs, alcohol, dust.                                                                                          |
| Social              | Lifestyle characteristics such as smoking or diet / economic development, population, government policy, war                                     |



### This class

- Environmental agents that matter to health and health care
- Health impact of the environment
- Mechanism of health impact of environment
- Transmission of environmental agents
- Setting of environmental risks
- Environmental health specifics

#### **DISEASES WITH THE LARGEST ENVIRONMENTAL CONTRIBUTION**





Diseases with largest burden attributable to environment

- Diarrhoea. An estimated 94% of the diarrhoeal burden of disease is attributable to environment, and associated with risk factors such as unsafe drinkingwater and poor sanitation and hygiene.
- Lower respiratory infections. These are associated with indoor air pollution related largely to household solid fuel use and possibly to second-hand tobacco smoke, as well as to outdoor air pollution. In developed countries, an estimated 20% of such infections are attributable to environmental causes, rising to 42% in developing countries.



Diseases with largest burden attributable to environment

- Other' unintentional injuries. These include injuries arising from workplace hazards, radiation and industrial accidents; 44% of such injuries are attributable to environmental factors.
- Malaria. The proportion of malaria attributable to modifiable environmental factors (42%) is associated with policies and practices regarding land use, deforestation, water resource management, settlement siting and modified house design, e.g. improved drainage.



# Environmental disease burden by region, 2002





#### This class

- Environmental agents that matter to health and health care
- Health impact of the environment
- Mechanism of health impact of environment
- Transmission of environmental agents
- Setting of environmental health risks
- Environmental health specifics



# Routes of environmental hazards

- Routes of entry:
  - Skin
    - Lungs:

Lung is esp. sensitive to airborne microbes, smoke, chemical aerosols, fumes, dusts, and allergens

– Gastrointestinal tract



### Health effect of environment

# Exposure (dose) ------> health effect vulnerability



### Factors affecting susceptibility

**Fitness** mental and physical fitness may be protective

Nutrition e.g. poor nutrition weakens a persons ability to fight infection and exacerbates the spread of diarrheal disease. Over-nutrition contributes to heart disease, immobility, diabetes and some cancers.

Lifestyle includes personal preferences such as smoking, alcohol and drug misuse; occupation, deprivation and residence.



Age the young and the old age more vulnerable to the effect

Sex male and female react differently to some chemicals. For example dioxin accumulates in fat and is therefore more of a hazard to female than male.

**Disease** those with preexisting disease and the immunocompromised are especially susceptible.

Genes e.g. genetic predisposition to cancer



### This class

- Environmental agents that matter to health and health care
- Health impact of the environment
- Mechanism of health impact of environment
- Transmission of environmental agents
- Setting of environmental health risks
- Environmental health specifics



### The environment

#### Agents

- (Micro)biologic agents
- Chemical agents
- Physical source
- (Psycho)social source + food

#### Transmitters

- ♦ Air
- Soil
- Water

#### Settings

- ♦ Home
- School
- Worksite



### Exposure to agents through:

- ♦ Air
- Water
- ♦ Soil
- Food: poisoned / toxic









### Public concern

- Concern focuses on hazards such as chemical toxins (e.g. dioxin), radiation, radon, sick buildings and other "high-tech" environmental & occupational hazards.
- Little attention for hazards that we are familiar such as noise, dust, though these may be more dangerous to our health



# What substance are you specifically concerned about in your environment?



عريى ΨX English

2

http://www.who.int/mediacentre/news/releases/ 2014/air-pollution/en/



| Health topics Data                      | Media centre          | Publications                                                                                                                                                                                                                                                                                                                                | Countries    | Programmes        | About WHO       |            |  |  |
|-----------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|-----------------|------------|--|--|
|                                         | Medi                  | a centre                                                                                                                                                                                                                                                                                                                                    |              |                   |                 |            |  |  |
| Media centre                            | 7 mil                 | lion prema                                                                                                                                                                                                                                                                                                                                  | ature dea    | ths annuall       | y linked to     | air        |  |  |
| <ul> <li>News</li> </ul>                | polit                 | 4 3M by indeer air pollution                                                                                                                                                                                                                                                                                                                |              |                   |                 |            |  |  |
| <ul> <li>News releases</li> </ul>       | News re               | 3.7M by outdoor air pollution in 2012                                                                                                                                                                                                                                                                                                       |              |                   |                 |            |  |  |
| Previous years                          | 25 MAF                | RCH 2014   GEN                                                                                                                                                                                                                                                                                                                              | EVA - In new | estimates release | d today, WHO re | ports that |  |  |
| <ul> <li>Statements</li> </ul>          | in 2012<br>of air po  | <ul> <li>in 2012 around 7 million people died - one in eight of total global deaths – as a result of air pollution exposure. This finding more than doubles previous estimates and confirms that air pollution is now the world's largest single environmental health risk. Reducing air pollution could save millions of lives.</li> </ul> |              |                   |                 |            |  |  |
| <ul> <li>Notes for the media</li> </ul> | confirm<br>Reducir    |                                                                                                                                                                                                                                                                                                                                             |              |                   |                 |            |  |  |
| Events                                  | New es                | stimates                                                                                                                                                                                                                                                                                                                                    |              |                   |                 |            |  |  |
| Fact sheets                             | In partie             | In particular, the new data reveal a stronger link between both indoor and outdoor<br>air pollution exposure and cardiovascular diseases, such as strokes and ischaemic<br>heart disease, as well as between air pollution and cancer. This is in addition to air                                                                           |              |                   |                 |            |  |  |
| Multimedia                              | air pollu<br>heart di |                                                                                                                                                                                                                                                                                                                                             |              |                   |                 |            |  |  |
| Contacts                                | pollution<br>respirat | pollution's role in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases.                                                                                                                                                                                             |              |                   |                 |            |  |  |



### **Outside Air**

- Under the Clean Air Act in USA, EPA has established standards or limits for six air pollutants, known as the criteria air pollutants:
  - (1) carbon monoxide (CO),
  - **2** lead (Pb),
  - **③** nitrogen dioxide (NO2),
  - **4** sulfur dioxide (SO2),
  - **(O3)** ozone (O3)
  - **6** particulate matter (PM)
- AQI(air quality index, AQI)





### Air Quality Index USA

EPA. Technical Assistance Document for the Reporting of Daily Air Quality – the Air Quality Index (AQI), December 2013

| O <sub>3</sub> (ppb) | PM <sub>2.5</sub> (µg/m³) | ΡΜ <sub>10</sub><br>(μg/m³) | CO (ppm)  | SO <sub>2</sub> (ppb) | NO <sub>2</sub> (ppb) | AQI     |
|----------------------|---------------------------|-----------------------------|-----------|-----------------------|-----------------------|---------|
| -                    | 0.0-12.0                  | 0-54                        | 0.0-4.4   | 0-35                  | 0-53                  | 0-50    |
| -                    | 12.1-35.4                 | 55-154                      | 4.5-9.4   | 36-75                 | 54-100                | 51-100  |
| 125-164              | 35.5-55.4                 | 155-254                     | 9.5-12.4  | 76-185                | 101-360               | 101-150 |
| 165-204              | 55.5-150.4                | 255-354                     | 12.5-15.4 | 186-304               | 361-649               | 151-200 |
| 205-404              | 150.5-250.4               | 355-424                     | 15.5-30.4 | 305-604               | 650-1249              | 201-300 |
| 405-504              | 250.5-350.4               | 425-504                     | 30.5-40.4 | 605-804               | 1250-1649             | 301-400 |
| 505-604              | 350.5-500.4               | 505-604                     | 40.5-50.4 | 805-1004              | 1650-2049             | 401-500 |



|                                                                                                             |                                                                                                                                                                                                                                 |                                                                                                                                                                          |                 | -    | Go                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AirNow                                                                                                      | ,                                                                                                                                                                                                                               | Local Air Quality Condit                                                                                                                                                 | ions            | 1    | And in case of the local division of the loc |
|                                                                                                             |                                                                                                                                                                                                                                 | Zip Code: Go                                                                                                                                                             | State : Alabama | ▼ Go | My Current Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                             |                                                                                                                                                                                                                                 |                                                                                                                                                                          |                 | 100  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AQI Calcula                                                                                                 | ator: Conce                                                                                                                                                                                                                     | entration to                                                                                                                                                             | AQI             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                             | Select a criteria pollutant and<br>concentration in the specified<br>Quality Index and associated<br>calculated below.                                                                                                          | l enter the pollutant<br>l units above; the Air<br>information are                                                                                                       |                 |      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Select a Pollu                                                                                              | itant                                                                                                                                                                                                                           |                                                                                                                                                                          |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PM2.5 - Particulate <2.5 mi                                                                                 | icrons (24hr avg) ▼                                                                                                                                                                                                             |                                                                                                                                                                          |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Units Required: ug/m3                                                                                       |                                                                                                                                                                                                                                 |                                                                                                                                                                          |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                             |                                                                                                                                                                                                                                 |                                                                                                                                                                          |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Enter the Concentration:                                                                                    | 155 Calculate Re                                                                                                                                                                                                                | set                                                                                                                                                                      |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AQI AQI                                                                                                     | Category                                                                                                                                                                                                                        |                                                                                                                                                                          |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 205 Very                                                                                                    | Unhealthy                                                                                                                                                                                                                       |                                                                                                                                                                          |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sensitive Groups                                                                                            | Health Effects Statements                                                                                                                                                                                                       | Cautionary Statements                                                                                                                                                    |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| People with respiratory<br>or heart disease, the<br>elderly and children<br>are the groups most at<br>risk. | Significant aggravation<br>of heart or lung<br>disease and premature<br>mortality in persons<br>with cardiopulmonary<br>disease and the<br>elderly: significant<br>increase in respiratory<br>effects in general<br>population. | People with respirator<br>or heart disease, the<br>elderly and children<br>should avoid any<br>outdoor activity:<br>everyone else should<br>avoid prolonged<br>exertion. | y               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                             |                                                                                                                                                                                                                                 |                                                                                                                                                                          |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

AOI Calculator: AOI to Concentration

https://airnow.gov/index.cfm?action=resources.conc\_aqi\_calc



### Air Quality Index China

#### MEP, Technical Regulation on Ambient Air Quality, February 2012

| O <sub>3</sub> (ppb) | PM <sub>2.</sub> | <sub>5</sub> (µg/m³) | PM <sub>10</sub><br>(µg/m³) | CO (ppm) | SO <sub>2</sub> (ppb) | NO <sub>2</sub> (ppb) | AQI                 |
|----------------------|------------------|----------------------|-----------------------------|----------|-----------------------|-----------------------|---------------------|
| 160                  | 35               | 12                   | 50                          | 5        | 150                   | 100                   | 0-50                |
| 200                  | 75               | 35.4                 | 150                         | 10       | 500                   | 200                   | <mark>51-100</mark> |
| 300                  | 115              | 55.4                 | 250                         | 35       | 600                   | 700                   | 101-150             |
| 400                  | 150              | 150.4                | 350                         | 60       | 850                   | 1200                  | 151-200             |
| 800                  | 250              | 250.4                | 420                         | 90       | -                     | 2340                  | 201-300             |
| 1000                 | 350              | 350.4                | 500                         | 120      | -                     | 3090                  | 301-400             |
| 1200                 | 500              | 500.4                | 600                         | 150      | -                     | 3840                  | 401-500             |
|                      | 25               |                      | 50                          |          |                       | WHO qui               | delines 2005        |



### **Components air pollutants**

- Particulate matter
  - PM10 and PM2.5
- Metal fumes: is gaseous of metal oxides
  - ►Lead PbO<sub>2</sub>
- Gas
  - Ozone
  - > Nitrogen dioxide  $(NO_2)$
  - > Sulfur dioxide  $(SO_2)$
  - Hydrocarbons
  - Carbon monoxide (CO)

- Dusts
  - Coal dust
  - silica dust



### Serious air pollution

#### **Photochemical smog**

- Nitrogen dioxide and Hydrocarbons at summer with strong sunshine and high temperature (over 30°C)
- Smog with blue light and *strong oxidation and irritant characteristics*
- In heavy traffic area
   caused by automobile
   exhaust





### Great smog of London

 The Great Smog of 1952, sometimes called the Big Smoke: In the winter of 1952, the cold weather combined with an anticyclone and windless conditions, collected airborne pollutants – mostly arising from the use of coal – to form a thick layer of smog over the city. It lasted from Friday, 5 December to Tuesday, 9 December 1952 and then dispersed quickly when the weather changed.





Government medical reports in the following weeks, however, estimated that up until 8 December, 4,000 people had died as a direct result of the smog and 100,000 more were made ill by the smog's effects on the human respiratory tract. More recent research suggests that the total number of fatalities was considerably greater, about 12,000.









### Indoor air pollution

- Pollutants produced or released indoor
- Sick building syndrome (office tower)
  - high Volatile Organic Compounds, esp. formaldehyde
  - lack of fresh air
  - At risk (but often unnoticed) are white collar workers in service industry
- Environmental tobacco smoke
- Cooking smoke (esp for Chinese cooking)



### The environment

#### Agents

- (Micro)biologic agents
- Chemical agents
- Physical source
- (Psycho)social source

#### Transmitters

- ♦ Air
- ♦ Soil
- ♦ Water

### Settings

- Home
- School
- Worksite



### Exposure setting

- Home and residential area
  - low dose, long term exposure
  - sensitive population
- Workplace
  - high dose, short-term
  - Healthy Worker effect
- School
  - Dose? long term exposure
  - sensitive population

#### Commercial and entertainment spaces

- Dose? Duration?
- Population?



### Neighborhood environment

- Housing
- Physical environment
  - urban planning (routes & connectivity)
  - green spaces
  - road safety
- Social environment
  - social cohesion & neighborhood social capital
  - social safety (vandalism, crime)
- Area-based initiatives targeting multiple and complex problems in (deprived) neighborhoods



### The sick building syndrome

 The sick building syndrome (SBS) comprises of various nonspecific symptoms that occur in the occupants of a building. This feeling of ill health increases sickness absenteeism and causes a decrease in productivity of the workers.



Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796751/



# Signs and symptoms of SBS

#### Physical:

- Headache,
- dizziness,
- nausea,
- eye, nose or throat irritation,
- dry cough,
- dry or itching skin,
- hoarseness of voice,
- allergies,
- cold,

- flu-like symptoms,
- increased incidence of asthma attacks and personality changes.

#### Psycho:

- difficulty in concentration,
- fatigue,
- sensitivity to odours,



### **Etiology of SBS**

#### The cause of the symptoms is not known.

#### Possible factors:

- Chemical contaminants: Outdoor & indoor sources (volatile organic compounds, VOC)
- Biological contaminants: pollen, bacteria, viruses, fungus, molds, etc. (Legionnaire's disease caused by air-conditioning systems)
- Electromagnetic radiation: microwaves, televisions and computers emit electromagnetic radiation, which ionizes the air.



- Psychological factors: work stress, poor interpersonal relationships
- Poor and inappropriate lighting with absence of sunlight, Low-frequency noise, poor ergonomics and humidity may also contribute to SBS



### This class

- Environmental agents that matter to health and health care
- Health impact of the environment
- Mechanism of health impact of environment
- Transmission of environmental agents
- Setting of environmental health risks
- Environmental health specifics



#### Dose

- Exposure levels
- Exposure duration
- Effects
  - Acute (high exposure) or chronic (long duration)
  - Latent period
  - Threshold level
  - Threshold limit level
- Dose response relationship



### Latent period

## = time from exposure till occurrence of first symptom(s) of exposure to environment

#### Long latent period:

- Low dose
- Long-term effect



Illness

#### Asymptomatic



### **Threshold levels**

#### **Threshold level:**

- a dose below which the human body can adapt successfully and no harm occurs
- Threshold limit value (TLV):
- the maximum allowed concentration of a particular risk factor



### **Dose-response relationship**

Effect on the risk of a defined outcome produced by a given amount of an agent or a level of exposure.

- A dose-response relationship is one in which increasing levels of exposure are associated with either an increasing or a decreasing risk of the outcome.
- Demonstration of a dose-response relationship is considered strong evidence for a causal relationship between the exposure and the outcome.
- The chance of a causal relationship cannot be disregarded, however, even when a dose-response relationship is absent.



### **Dose-response relationship**

- Response within a group of people exposed to environmental risk
- Not effect in one individual
- It's about the proportions of the people occurring symptoms





### Hazard and risk

- Hazard describes the potential to cause harm (yes or no)
- Risk is a measure of the likelihood of harm occurring from exposure to a hazard (quantification of the hazard)

How do you view cigarette smoking?

- Hazard appreciated?
- Risk acknowledged?



### Assessment of environmental risk

#### Five steps:

- 1. Identify the environmental agent presumed to be hazard
- 2. Establish diagnostic criteria for the symptoms or illness that is the likely outcome of exposure
- 3. Assess the dose and characterize exposure by number of exposures, duration and intensity of each exposure as well as timing of exposures (to establish cause preceded effect, the causality)
  Outside dose = ∑(concentration exposure \* time)
  - Internal dose = bio-material concentration



### Assessment of environmental risk

- 4. Determine whether there is a statistical association between the exposure to the presumed hazard and the outcome *= analysis of dose-response relationship* Use methods that control for possible alternative explanations.
- Determine the risks for an exposed individual from known population exposure levels.
   Determine probably impact on population level calculating the attributable fraction.



#### **Discussion topic**

### What are you concerned about with regard to environmental hazards?



### **Potential topics for reports**

- 1. Outdoor and indoor air pollution and health
- 2. Water pollution and health
- 3. Soil pollution and health
- 4. Food safety and health
- 5. Occupational exposure and health
- 6. Occupational stress and health
- 7. Road safety
- 8. Occupational hazards and safety in hospital

#### Ten minutes for each speech!



### **Report components**

- Related case report from clinical setting or other sources
   (the (clinical) reason for concern about environment)
- Exposure sources and routes
- Health damage mechanism
- Prevention strategies and measures

#### **Reporting on May 23**



#### The final grade consists of three parts:

- Closed book exam (50%)
- Reports on Environment health and safety, presentation (20%)
- Reports on Health system, presentation (20%) and essay (10%)



# **Good luck!**